

THE NEW GENERATION LORAWAN SENSORS OF SENSECAP

S2120 8-in-1 Weather Station User Guide

Table of Contents

1. Product Introduction	3
1.1 Introduction	3
1.2 Quick Start Guide	3
2. Part List	4
3. Key Parameters of the Sensor	5
4. Pre-Installation	6
4.1 Diagram	6
4.2 Install the Wind Sensor	
4.3 Install the Rain Gauge	
4.4 Power Supply Mode	
4.4.1 Install the battery with built-in box	
4.4.2 Install the battery with external box	
5. LED of Sensor Working Status	13
6. SenseCAP Mate App	15
6.1 Download App	15
6.2 How to connect sensor to App	16
6.2.1 Create a New Account	16
6.2.2 Connect to Sensor to App	17
6.3 Configure parameters through App	19
6.3.1 Select the Platform and Frequency	
6.3.2 Set the Interval	
6.3.3 Set the EUI and Key	
6.3.4 Set the Packet Policy	
6.3.6 Restore Factory Setting	
7. Connect to the SenseCAP Portal	26
7.1 SenseCAP Portal	26
7.1.1 Create a New Account	
7.1.2 Other Functions	27
7.1.3 API Instruction	27
7.2 Connect to SenseCAP with Helium Network	28
7.2.1 Quick Start	
7.2.2 Preparation	
7.2.3 Bind Sensor to SenseCAP Portal	
7.2.4 Setup the Sensor	
7.2.5 Set Frequency of Sensor via SenseCAP Mate App	32

7.2.6 Check Data on SenseCAP Portal	33
7.3 Connect to SenseCAP with private TTN	34
7.3.1 Quick Start	34
7.3.2 Preparation	
7.3.3 Bind Sensor to SenseCAP Portal	
7.3.4 Setup the Sensor	
7.3.5 Set Frequency of Sensor via SenseCAP Mate App	
8. Connect to Helium Network	37
9. Connect to The Things Network	37
10. Payload Decoder	38
10.1 Decoder Code	38
10.2 Packet Parsing	39
10.3 Data Parsing Example	41
10.3.1 Measurement data packets	41
10.3.2 Battery information packets	42
11. LoRaWAN Downlink Command	45
11.1 Set the Data Uplink Interval	45
11.2 Reboot the device	47
11.3 How to send downlink	47
12. Device Installation	48
12.1 Select an Appropriate Installation Location	48
12.2 Installing the Weather Station	
12.2.1 Adjust the solar panel	48
12.2.2 Install the Mounting Pole	50
12.2.3 Direction Alignment	
12.2.4 Recommendation for best wireless communication	53
13. Trouble Shooting	54
13.1 Maintenance of Weather Station	54
13.2 Sensors can't join LoRa network, how to do?	54
13.3 S2120 Rainfall Intensity Measurement Principle?	54
13.4 The wind direction degrees and corresponding direction diagram	55
13.5 Battery Life Prediction	
13.6 Support	55
13.7 Document Version	56

1. Product Introduction

1.1 Introduction

The S2120 Weather Station monitoring Air Temperature, Humidity, Wind Speed/Direction, Rainfall Intensity, Light, UV Index, and Barometric Pressure measurements provides you with hyperlocal weather at your fingertips.

Perfect for home, office, or business use, this professional home weather station allows you to monitor your backyard weather conditions from anywhere. Protect your family, the house, and your garden with minutes updates in weather changes. Additionally, S2120 weather stations also support applications in agriculture, meteorology, urban environmental monitoring and other scenarios.

Smart and connected, the S2120 provides data on your phone, tablet, computer browser. We provide the SenseCAP Mate App, users can quickly view data via the App. We also provide SenseCAP Portal to manage your weather station through the Web page.

The S2120 is a standard LoRaWAN sensor that can be connected to any LoRaWAN gateway and service.

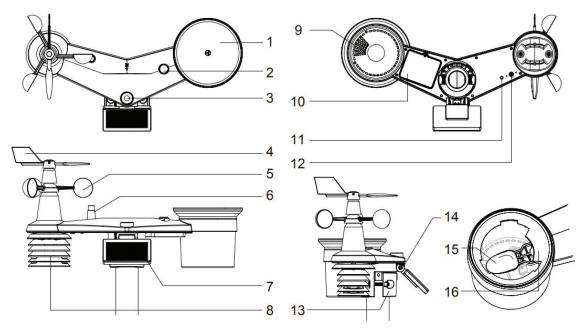
1.2 Quick Start Guide

Step	Description	Section
Step 1	Install the battery	4.4
Step 2	Download App and configure parameters	6.1, 6.3
	Connect to SenseCAP Portal	7
Step 3	Connect to Helium Console	8
	Connect to TTN Server	9

2. Part List

Before installing, please check the part list to ensure nothing is missing.

Picture	Name	Quantity
* steerer	Weather Station	1
	Pole mounting stand	1
	Mounting clamp	1
	Plastic pole	1
	Screw, Hex nut and Flat washer	4
	Screw and Hex nut	1
SCHOSCLAP	External battery box (6*AA battery size, 2m cable)	1


3. Key Parameters of the Sensor

Using the LoRaWAN protocol generally involves the following parameters.

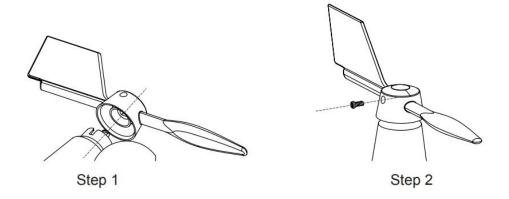
Parameters	Description
LoRaWAN MAC Version	V1.0.3
Join Type	OTAA (Default) ABP (It can be modified via App)
Device EUI	Unique identification of device, one of the join network parameters on OTAA mode. (It can be got via App)
Device Code (KEY)	On the device label, for device binding and API call.
App EUI	Unique identification of application, one of the join network parameters on OTAA mode. (It can be got via App)
Арр Кеу	Application key, one of the join network parameters on OTAA mode. (It can be got via App)
DevAddr	This parameter is available only in ABP mode, one of the join network parameters.
NwkSkey	This parameter is available only in ABP mode, one of the join network parameters.
AppSkey This parameter is available only in ABP mode, one of join network parameters.	

4. Pre-Installation

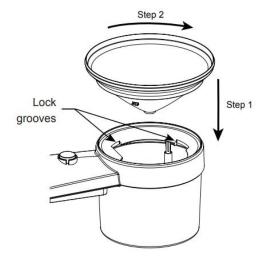
4.1 Diagram

1. Rain gauge	9. Drain holes
2. Balance indicator	10. Built-in battery box
3. UV and Light Intensity sensor	11. Red LED indicator
4. Wind vane	12. Config button
5. Wind cups	13. Mounting clamp
6. Antenna	14. Adjustable hinge of solar panel
7. Solar panel	15. Tipping bucket
8. Radiation shield, temperature and humidity sensor, barometric pressure sensor	16. Rain sensor

4.2 Install the Wind Sensor


With reference to photo below, locate and align the flat are on the wind vane shaft to the

- 6


flat surface on the wind vane and push the vane onto the shaft. Tighten the set screw with a

precision screwdriver.

4.3 Install the Rain Gauge

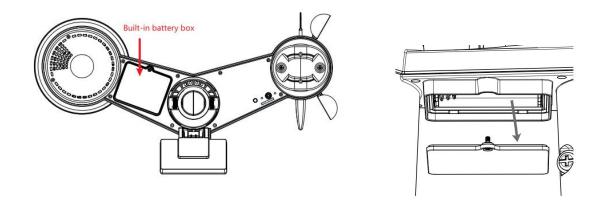
Install the rain gauge funnel and rotate clockwise to lock the funnel to the weather station.

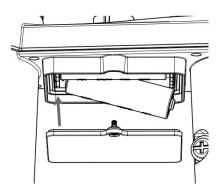
4.4 Power Supply Mode

Weather stations do not contain batteries, so additional batteries are required.

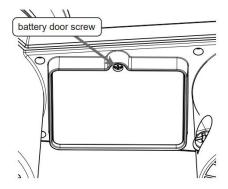
The sensor is powered by a combination of solar panels and batteries. When the solar panels are working, the device is powered by the solar panels; When solar energy is low, it is powered by batteries.

Different types of batteries affect the operating temperature range of the sensor. In addition, Different number of batteries determines the battery life of the sensor.

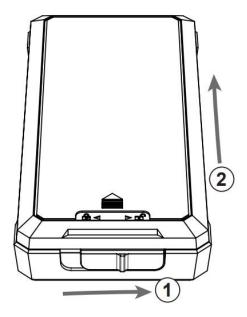

Battery schemes	Advantage and disadvantage
3 * 1.5V AA alkaline battery, built-in battery box	The operating temperature of the sensor depends on the operating temperature of the battery. If the alkaline battery is used, the operating temperature range is -20 \sim 60 $^{\circ}$ C.
3 * 1.5V AA Lithium battery, built-in battery box	If the alkaline battery is used, the operating temperature range is -40 \sim 60 $^{\circ}$ C.
6 * 1.5V AA alkaline battery, external battery box	It will last twice as long as 3 x batteries.
6 * 1.5V AA alkaline battery, external battery box	It will last twice as long as 3 x batteries.

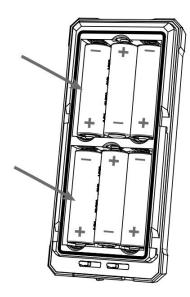

The battery box does not have the charging capability. Therefore, non-rechargeable batteries are recommended. If you choose a rechargeable battery, you need to take out the battery and charge it separately after the battery is exhausted.

4.4.1 Install the battery with built-in box

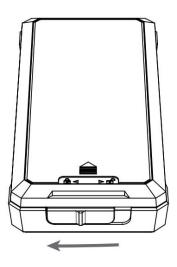

Step 1: Unscrew the battery door at the bottom of weather station.

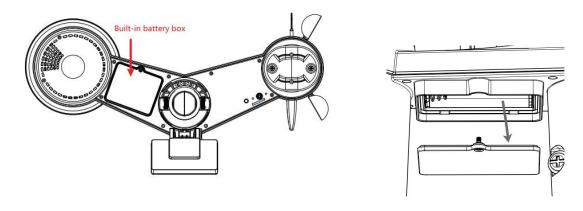
Step 2: Insert the 3 AA batteries according to the +/- polarity indicated. Then close the battery door.

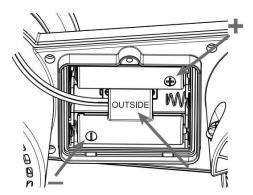

Step 3: Tighten the battery door screw. Once the installation completed, the red LED indicator at the bottom of the weather station will be flashing.


4.4.2 Install the battery with external box

Step 1: Slide the battery box lock switch to unlock position. Push to open the battery box door according to the arrow direction.

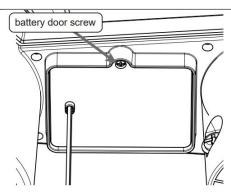



Step 2: Insert the 6 AA batteries according to the +/- polarity indicated.

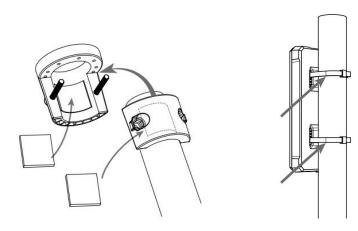

Step 3: Place and lock the battery box door.

Step 4: Unscrew the battery door at bottom the of weather station.

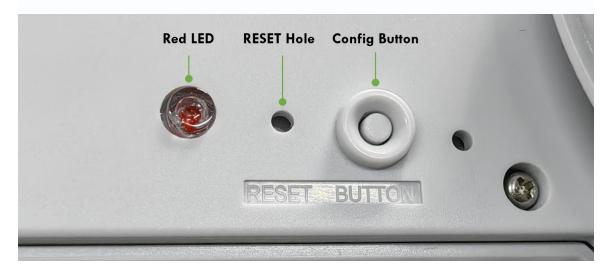
Step 5: Insert the dummy battery to the battery compartment, make sure the "OUTSIDE" marking faces outside and the +/- polarity in correct orientation.



Step 6: Replace with the battery door which come along with the external battery box, then tighten the battery door screw. Once the installation completed, the red LED indicator at the bottom of the weather station will be flashing.



If the dummy battery is not installed in correct orientation, battery power connection will be failure and the LED indicator will not be flashing.


Step 7: Use the cable ties to mount the battery box onto the mounting pole.

5. LED of Sensor Working Status

At the bottom of the weather station are buttons and indicators:

You can refer to the LED indicator for the Sensor for it's working status. Please see the status explanations in the chart below:

Actions	Description	Green LED Status
Install the battery, power on for the first time	Power on and activate the Bluetooth	The red LED light will be on. It needs to connect Bluetooth and configure the frequency.
Press "config button" once	Reboot device and join LoRa network	 Waiting for join LoRa network: the led breathing light flashing Join LoRa network success: LED flashes fast for 2s, then go out LoRa network join failure: LED will always breathe flashing
Press "config button" and hold for 3s	The sensor will be restored to factory Settings	LED flashes fast for 3s

After the battery is installed for the first time, you must connect the Bluetooth and configure the frequency to join LoRaWAN network and work normally. If the frequency is not set, the red LED is steady on.

6. SenseCAP Mate App

6.1 Download App

As a tool, SenseCAP Mate App is used to config LoRa parameters, set interval, bind devices to your account and check device basic information.

(1) For iOS, please search for "SenseCAP Mate" in the App Store and download it.

Download SenseCAP Mate App

(2) For Android, please search for "SenseCAP Mate" in the Google Store and download it.

You can also download App from https://www.pgyer.com/sensecapmate

6.2 How to connect sensor to App

6.2.1 Create a New Account

SenseCAP Mate supports device configuration and remote management. To use the SenseCAP Portal platform and other functions, please register an account.

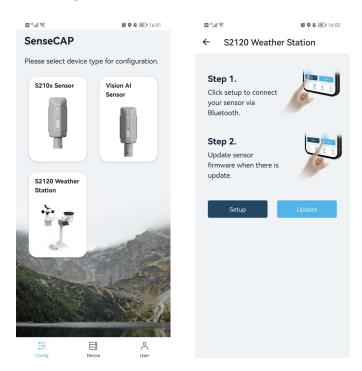
SenseCAP Mate supports offline functionality, and you can opt out of an account if you only use the configuration sensor. Just click **Skip**.

Please select Global of Server Location.

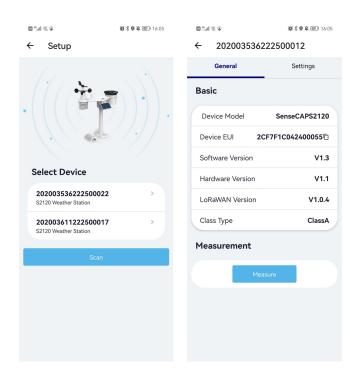
You can also create an account via the SenseCAP Portal: http://sensecap.seeed.cc

- 1) Select register account, enter email information and click "register", the registered email will be sent to the user's mailbox.
- 2) Open the "SenseCAP..."Email, click the jump link, fill in the relevant information, and complete the registration.
- 3) Return to the login interface and complete the login.

If you can't find the email, it may be automatically identified as "spam" and put in the "trash can".

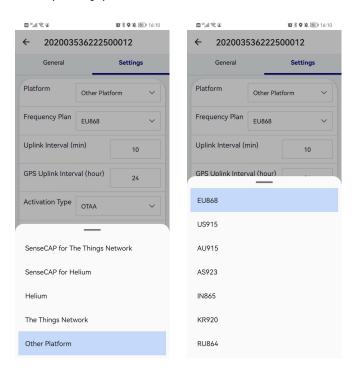

6.2.2 Connect to Sensor to App

1) After the battery is installed, the red LED will be steady on. Also activate Bluetooth.


2) Please select "S2120 Weather Station".

Please click the "Setup" button to turn on Bluetooth and click "Scan" to start scanning the sensor's Bluetooth.

- 3) Enter the pairing password. The default password is 000000.
- 4) Select the Sensor by BT ID (BT ID is on the bottom label of the sensor). Then, the basic information of the sensor will be displayed after entering.


-18

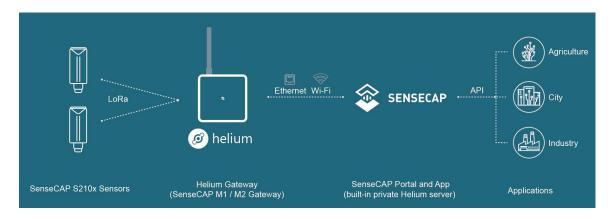
6.3 Configure parameters through App

6.3.1 Select the Platform and Frequency

S2120 weather stations are manufactured to support universal frequency plan from 863MHz ~928MHz in one SKU. That is to say, every single device can support 7 frequency plans.

Platform	Description	
	Default platform.	
SenseCAP for The Things Network	It must be used with SenseCAP Outdoor Gateway (https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p-4305.html). SenseCAP builds a proprietary TTN server that enables sensors to be used out of the box when paired with an SenseCAP outdoor gateway.	
SenseCAP for Helium	When there is the Helium network around the user, data can be uploaded using sensors. Devices run on a private Helium console of SenseCAP. Users do not need to create devices on Helium console, right out of the box.	
Helium	Connect Sensor to public Helium console.	
The Things Network	Connect Sensor to your TTN(TTS) server.	
Other Platform	Other LoRaWAN Network Server.	

1) SenseCAP for Helium:

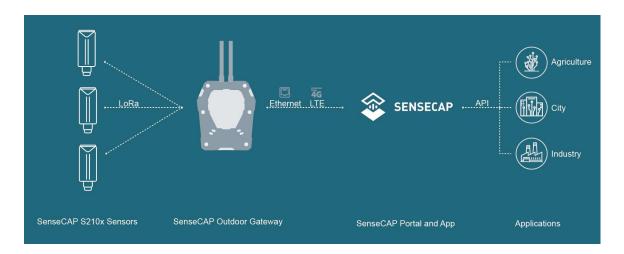

We provide the SenseCAP Portal to manage devices and data: sensecap.seeed.cc

We built a private Helium Console with an embedded SenseCAP Portal. When users get the SenseCAP sensors, you can use it by scanning the code and binding it to the Portal.

"SenseCAP for Helium" is selected by default. The device runs in a fixed main frequency and sub-band, refer to Helium Frequency Plan (https://docs.helium.com/lorawan-on-helium/frequency-plans/). You only need to select the main frequency, such as EU868 and US915.

SenseCAP for Helium supports the following frequency plan:

EU868 / US915 / AU915 / KR920 / IN865 / AS923-1 / AS923-2 / AS923-3 / AS923-4


2) SenseCAP for The Things Network

SenseCAP Portal also builds the TTN private server, and the sensor must be used together with the SenseCAP Outdoor Gateway (https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p-4305.html).

Due to the limitation of the SenseCAP outdoor gateway frequency, "SenseCAP for TTN" supports the following frequency plan(The sensor is capable of supporting all frequency plan):

Gateway Frequency	Description
EU868	It must be used with SenseCAP EU868 Gateway (https://www.seeedstudio.com/LoRaWAN-Gateway-

	EU868-p-4305.html)	
US915	It must be used with SenseCAP US915 Gateway (https://www.seeedstudio.com/LoRaWAN-Gateway-US915-p-4306.html)	
AU915	Need to contact sales to purchase.	
AS923-1	Need to contact sales to purchase.	
AS923-2	Need to contact sales to purchase.	

3) Helium

Users can choose sensors to use on the public helium console:

https://console.helium.com/

4) The Things Network

Users can choose sensors to use on the public The Things Network server:

https://console.cloud.thethings.network/

5) Other Platform:

When you use other LoRaWAN network server, please select Other Platform.

At this point, you need to determine the sensor frequency band according to the gateway frequency and sub-band.

S210x Sensors support the following frequency plan:

Sensor Frequency	Common Name	Sub-band
EU863-870	EU868	
US902-928	US915	Sub band from 1 to 8 (default sub-band 2)
AU915-928	AU915	Sub band from 1 to 8 (default sub-band 2)
KR920-923	KR920	
IN865-867	IN865	
	AS923-1	
A C 0 2 7	AS923-2	Frequency plan for Helium
AS923 Frequency plan for Helium AS923-3	riequeticy plantion mellum	
	AS923-4	
RU864-867	RU864	

Different countries and LoRa WAN network servers use different frequency plans. For Helium network, please refer to:

https://docs.helium.com/lorawan-on-helium/frequency-plans

For The Things Network, please refer to:

https://www.thethingsnetwork.org/docs/lorawan/frequency-plans/

- 1) When using the SenseCAP platform, the EUI, APP EUI and APP Key are fixed and are the same as the sensor label.
- 2) When the sensor is selected to be used with a public platform such as Helium or TTN, the EUI will not change, and the sensor will generate a new fixed App EUI and App Key for network access.

6.3.2 Set the Interval

The working mode of device: wake up the device every interval and collect measurement values and upload them through LoRa. For example, the device collects and uploads data every 60 minutes by default.

Parameter	Туре
Uplink Interval	Unit: minutes, number from 1 to 1440.

The SenseCAP portal has a limit on uplink interval: minimum interval is 5 minutes.

The interval using the other platforms ranges from 1 to 1440 minutes.

6.3.3 Set the EUI and Key

The device uses OTAA to join the LoRaWAN network by default. So, it can set the device EUI and App EUI.

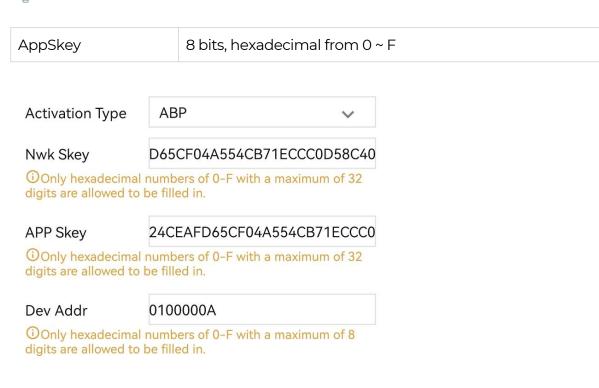
Parameter	Туре
Device EUI	16 bits, hexadecimal from 0 ~ F
App EUI	16 bits, hexadecimal from 0 ~ F
App Key	32 bits, hexadecimal from 0 ~ F

6.3.4 Set the Packet Policy

The sensor uplink packet strategy has three modes.

Parameter	Description
2C+1N (default)	2C+1N (2 confirm packets and 1 none-confirm) is the best strategy, the mode can minimize the packet loss rate, however the device will consume the most data packet in TTN, or date credits in Helium network.
1C	1C (1 confirm) the device will sleep after get 1 received confirm packet from server.
1N	1N (1 none-confirm) the device only send packet and then start to sleep, no matter the server received the data or not.

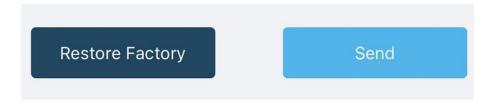
6.3.5 Set the Activation Type


The sensor supports two network access modes, OTAA by default.

Parameter	Description
OTAA (default)	Over The Air Activation, it joins the network through Device EUI, App EUI, and App Key.
ABP	Activation By Personalization, it joins the network through DevAddr, NwkSkey, and AppSkey.

When using ABP mode, you need to configure the following information:

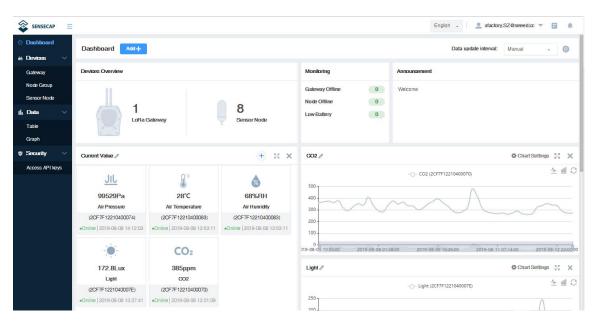
Parameter	Description
DevAddr	32 bits, hexadecimal from 0 ~ F
NwkSkey	32 bits, hexadecimal from 0 ~ F



The factory defaults to a fixed value.

6.3.6 Restore Factory Setting

When selecting the SenseCAP platform, you must use the fixed EUI/App EUI/App Key. Therefore, you need to restore the factory Settings before switching back to the SenseCAP platform from other platforms.


When we make a mistake or want to reset everything, we can click the button. The device will be restored to the factory's default configuration.

7. Connect to the SenseCAP Portal

7.1 SenseCAP Portal

The main function of the SenseCAP Portal is to manage SenseCAP devices and to store data. It is built on Azure, a secure and reliable cloud service from Microsoft. You can apply for an account and bind all devices to this account. SenseCAP provides the web portal and API. The web portal includes Dashboard, Device Management, Data Management, and Access Key Management, while API is open to users for further development.

7.1.1 Create a New Account

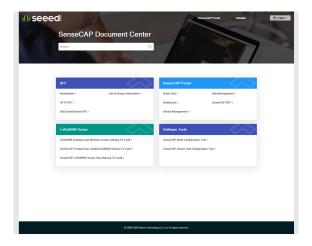
Portal Website: http://sensecap.seeed.cc

- 4) Select register account, enter email information and click "register", the registered email will be sent to the user's mailbox.
- 5) Open the "SenseCAP..."Email, click the jump link, fill in the relevant information, and complete the registration.
- 6) Return to the login interface and complete the login.

If you can't find the email, it may be automatically identified as "spam" and put in the "trash can".

7.1.2 Other Functions

- Dashboard: Including Device Overview, Announcement, Scene Data, and Data Chart, etc.
- Device Management: Manage SenseCAP devices.
- Data Management: Manage data, including Data Table and Graph section, providing methods to search for data.
- Subaccount System: Register subaccounts with different permissions.
- Access Key Management: Manage Access Key (to access API service), including Key Create, Key Update, and Key Check.

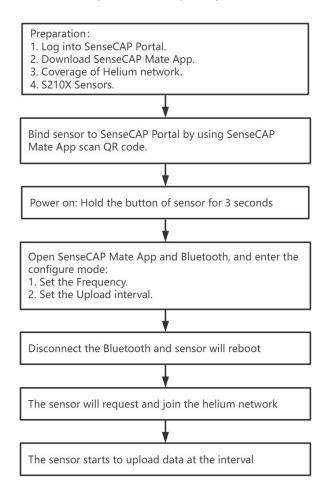

SenseCAP Portal User Guide: https://sensecap-docs.seeed.cc/quickstart.html

7.1.3 API Instruction

SenseCAP API is for users to manage IoT devices and data. It includes 3 types of API methods: HTTP protocol, MQTT protocol, and Websocket protocol.

- With HTTP API, users can manage LoRa devices, to get raw data or historical data.
- With MQTT API, users can subscribe to the sensor's real-time measurement data through the MQTT protocol.
- With Websocket API, users can get real-time measurement data of sensors through Websocket protocol.

Please refer to this link for API User Guide: https://sensecap-docs.seeed.cc/



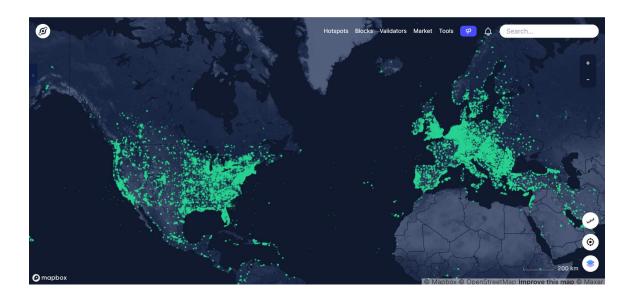
7.2 Connect to SenseCAP with Helium Network

7.2.1 Quick Start

Follow this process to quickly use the sensor, see the following section for details.

7.2.2 Preparation

SenseCAP Mate App


Download the App, please refer to section 5 for using.

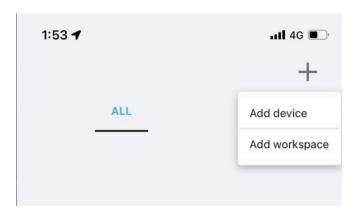
2) Coverage of Helium network

Option 1: Use the Helium network that already exists nearby.

Please refer to the map, search your location to see if there's any helium network around: https://explorer.helium.com/

A green hexagon indicates the presence of the network.

Option 2: Deploy a new Helium gateway.

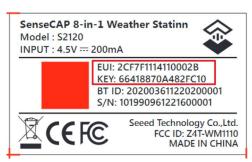

You can purchase M1, M2 gateways to cover your surroundings with the Helium network: https://www.sensecapmx.com/

7.2.3 Bind Sensor to SenseCAP Portal

Please open SenseCAP Mate App.

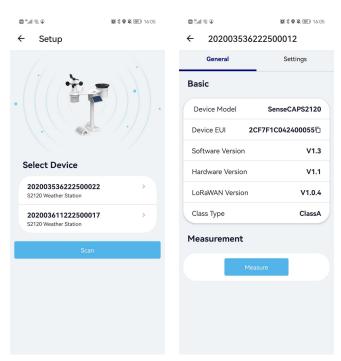
(1) Scan QR Code

1) Click "Add device" on the upper-right corner of device page to enter the device binding page.


2) Scan the QR code on the device to bind the device to your account. If you do not set it to a designated group, the device will be put into the "default" group.

(2) Manually fill in the EUI

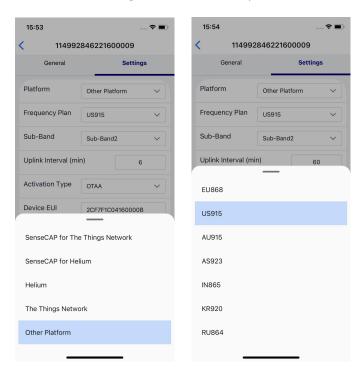
If the QR code sticker is damaged, you can manually fill in the EUI of the device to bind the device to your account. Please make sure you put in the EUI in the format suggested by the system and then click "confirm".



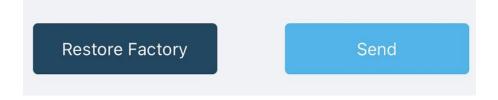
7.2.4 Setup the Sensor

- 1) Open the SenseCAP Mate App
- 2) Please click the "Setup" button to turn on Bluetooth and click "Scan" to start scanning the sensor's Bluetooth.

3) Select the Sensor by BT ID (label). Then, the basic information of the sensor will be displayed after entering.



7.2.5 Set Frequency of Sensor via SenseCAP Mate App

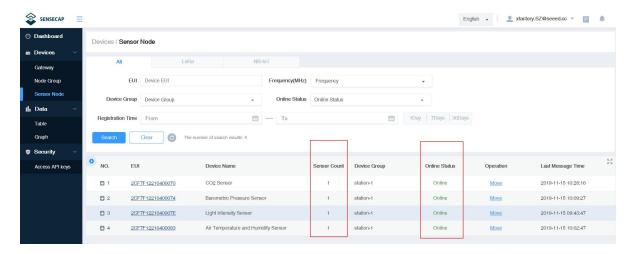

Set the corresponding frequency band based on the frequency band of the gateway.

Please refer to section 6 for detail.

1) Click the "Setting" and select the platform is "SenseCAP for Helium".

- 2) Select the Frequency Plan, if the gateway is US915, set the sensor to US915.
- 3) Click the "Send" button, send the setting to the sensor for it to take effect.

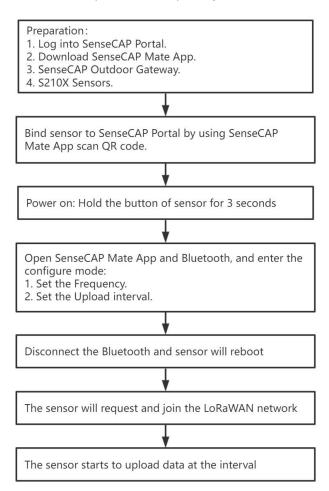
4) Click the "Home" button, the App will disconnect the Bluetooth connection.


Then, the sensor will reboot.


- 5) When the device is disconnected from Bluetooth, the LED flashes as a breathing light.
- 6) After joining the network successfully, LED flashes fast for 2s.

7.2.6 Check Data on SenseCAP Portal

On the SenseCAP App or the website http://sensecap.seeed.cc/, you can check the device online status and the latest data. In the list for each Sensor, you can check its online status and the time of its last data upload.



7.3 Connect to SenseCAP with private TTN

7.3.1 Quick Start

Follow this process to quickly use the sensor, see the following section for details.

7.3.2 Preparation

1) SenseCAP Mate App

Download the App, please refer to section 6 for using.

2) SenseCAP Outdoor Gateway

Now, the sensor needs to be used with the SenseCAP Outdoor Gateway (https://www.seeedstudio.com/LoRaWAN-Gateway-EU868-p-4305.html) to transmit data to the SenseCAP Portal.

- a) Setup the Gateway, connect to power cable and Internet.
- b) Bind the gateway to SenseCAP Portal.

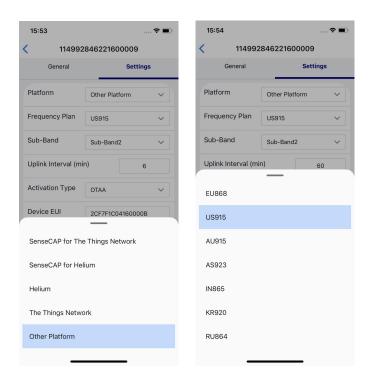
c) Ensure the gateway indicator is steady on.

d) Ensure the gateway is displayed online on the portal.

7.3.3 Bind Sensor to SenseCAP Portal

Please refer to the section 7.2.3

7.3.4 Setup the Sensor


Please refer to the section 7.2.4

7.3.5 Set Frequency of Sensor via SenseCAP Mate App

Set the corresponding frequency band based on the frequency band of the gateway.

Please refer to section 6 for detail.

1) Click the "Setting" and select the platform is "SenseCAP for The Things Network".

- 2) Select the Frequency Plan, if the gateway is US915, set the sensor to US915.
- 3) Click the "Send" button, send the setting to the sensor for it to take effect.

- 4) Click the "Home" button, the App will disconnect the Bluetooth connection.
 - Then, the sensor will reboot.
- 5) When the device is disconnected from Bluetooth, the LED flashes as a breathing light.
- 6) After joining the network successfully, LED flashes fast for 2s.

7.3.6 Check Data on SenseCAP Portal

Please refer to the section 7.2.6

8. Connect to Helium Network

Please refer to the manual to connect sensors to Helium public console:

https://files.seeedstudio.com/products/SenseCAP/S210X/How%20to%20Connect%20SenseCAP%20S210X%20to%20Helium%20Network.pdf

9. Connect to The Things Network

Please refer to this manual:

https://files.seeedstudio.com/products/SenseCAP/S210X/How%20to%20Connect%20SenseCAP%20S210X%20to%20The%20Things%20Network.pdf

Please refer to the link to use the TTN platform:

The Things Network website: https://www.thethingsnetwork.org

The Things Industries login: https://accounts.thethingsindustries.com/login

TTN Quick Start: https://www.thethingsnetwork.org/docs/quick-start/

10. Payload Decoder

10.1 Decoder Code

TTN payload decoding script for SenseCAP LoRaWAN:

https://github.com/Seeed-Solution/TTN-Payload-Decoder/blob/master/SenseCAP_S2120_Weather_Station_Decoder.js

Helium Decoder:

https://github.com/Seeed-Solution/TTN-Payload-Decoder/blob/master/SenseCAP_LoRaWAN_V2_Decoder_For_Helium.js

10.2 Packet Parsing

After being powered on or reboot, SenseCAP Sensors will be connected to the network using the OTAA activation method. Each Sensor Node will send data packets to the server, including the following data:

The weather station data protocol provides 6 types of packets to correspond to different information such as measurements, and the number of bytes of each packet may vary. The structure of the frame is shown in the image below. The frame content is sent in big-endian byte order.

01	Byte 2	Byte 3	Byte4	Byte 5	Byte 6	Byte 7	Byte 8	Byte9	Bytel 0	Bytell
I D	Temp e	eratur	Humidi ty	Light Intensity		UV	Wind S	peed		

02	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9
ID	Wind Directi	on	Rainfall Intensity				Barome Pressur	

03	Byte2
ID	Battery Level

04	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10
ID	Battery Level	Softwa	re & Hard	dware Ve	ersion		rement Interval	GPS Up Interval (reserve	

05	Byte2	Byte3	Byte4	Byte5
ID	Measu	Measurement		ink
	Uplink	Uplink Interval		(reserved)

06	Byte2		
----	-------	--	--

39

ID

Error Code

10.3 Data Parsing Example

10.3.1 Measurement data packets

Measurements list:

Measurements	Resolution	Unit
Air Temperature	0.1	°C
Air Humidity	1	%RH
Light Intensity	1	Lux
UV Index	0.1	(None)
Wind Speed	0.1	m/s
Wind Direction	0.1	o
Rainfall Intensity	0.001	mm/hour
Barometric Pressure	1	Pa

The raw payload: 010115410000005E0000000201560000000FE2703

Part	Value	Raw Data	Description
1	Frame ID 01	01	01 is the frame ID.
2	Air Temperature	<mark>0115</mark>	O115 is actually 0x0115 (signed number), whose equivalent decimal value is 277. Divide it by 10, and you will get the actual value for air Temperature as 27.7 °C.
3	Air Humidity	41	41 is actually 0x41(unsigned number), whose equivalent decimal value is 65. You will get the actual value for air humidity as 65%RH.
4	Light Intensity	0000005E	0000005E is actually 0x5E(unsigned number), whose equivalent decimal value is 94. You will get the actual value for light intensity as 94 Lux.

41

5	UV Index	05	os is actually 0x05(unsigned number), whose equivalent decimal value is 5. Divide it by 10, You will get the actual value for UV index as 0.5.
6	Wind Speed	0011	0011 is actually 0x11(unsigned number), whose equivalent decimal value is 17. Divide it by 10, you will get the actual value for Wind Speed as 1.7 m/s.
7	Frame ID 02	02	02 is the frame ID.
8	Wind Direction	0156	0156 is actually 0x0156(unsigned number), whose equivalent decimal value is 342. You will get the actual value for wind direction as 342°.
9	Rainfall Intensity	000000FE	OOOOOFE is actually 0x000000FE (unsigned number), whose equivalent decimal value is 254. Divide it by 1000, you will get the actual value for rainfall intensity as 0.254 mm/hour.
10	Barometric Pressure	2703	2703 is actually 0x2703 (unsigned number), whose equivalent decimal value is 9987. Multiply it by 10, you will get the actual value for barometric pressure as 99870 Pa.

10.3.2 Battery information packets

A packet of battery information will be uploaded when the device is powered on or reboot for the first time. Thereafter, the battery information will be uploaded once a day.

The first pack of battery information is uploaded together with software, hardware version, measurements information and etc.

The raw payload (Combined data packet):

<mark>04 64 01010103 000A 05A0 01</mark>0110430000000000000<mark>02</mark>011A000000002702

Part	Value	Raw Data	Description
1	Frame ID 04	04	04 is the frame ID.
2	Battery Level	<mark>64</mark>	64 is actually 0x64 (signed number), whose equivalent

			decimal value is 100. You will get the actual value for battery level as 100. Batteries have only two states: a value of 0 means they may only last for1~2 weeks. A value of 100 means the battery is sufficient.
3	Hardware and Software Version	01010103	01010103 is actually 0x01010103(unsigned number). HW.HW-SW.SW 0101: HW 1.1 0103: SW 1.3
4	Measurement Uplink Interval	000A	OOOA is actually 0x000A(unsigned number), whose equivalent decimal value is 10. You will get the actual value for Measurement Uplink Interval as 10 minutes.
5	GPS Uplink Interval (reserved)	05A0	osAo is actually 0x05A0(unsigned number), whose equivalent decimal value is 1440. You will get the actual value for GPS Uplink Interval as 1440 minutes. GPS is used in the customized version. The common version does not have the GPS function.
6	Measurements packet of 01 and 02	010110430000000000000000000000000000000	Please refer to 01/02 packets.

The raw payload (Combined data packet):

<mark>01</mark>011043000000000000000<mark>02</mark>011A000000002702 <mark>03</mark> **64**

Part	Value	Raw Data	Description
1	Measurements packet of 01 and 02	010110430000000000000000000000000000000	Please refer to 01/02 packets.
2	Frame ID 03	<mark>03</mark>	03 is the frame ID.

3	Battery Level	64	is actually 0x64 (signed number), whose equivalent decimal value is 100. You will get the actual value for battery level as 100.
			Batteries have only two states: a value of 0 means they may only last for1~2 weeks. A value of 100 means the battery is sufficient.

11. LoRaWAN Downlink Command

11.1 Set the Data Uplink Interval

- (1) Using the Network Server's portal or API to send downlink command, then the Node will respond to the ack. The downlink command takes effect and responds the next time the node uploads data.
- (2) Downlink as follow:

OxO	0x90	0x0	collect_dut	collect_duty	0x01	reserv	reserv	crc-L	crc-H
0		0	y_L	_H		e_L	e_H		

0x00	Fixed field
0x90	Fixed field
0x00	Fixed field
collect_duty_L	Data interval low byte, you can set the data interval, unit: minute
collect_duty_H	Data interval high byte, you can set the data interval, unit: minute
0x01	Fixed field
reserve_L	Reserved field, default set to A0
reserve_H	Reserved field, default set to 05
crc-L	CRC low byte, it's calculated by the CRC-16/KERMIT
crc-H	CRC low byte, it's calculated by the CRC-16/KERMIT

(3) When you send the downlink command, the Node responds to the ack command.

Γ	0x00	collect_duty_H	collect_duty_L	reserve_H	reserve_L

0x00	Fixed field
collect_duty_H	Data interval high byte
collect_duty_L	Data interval low byte
reserve_H	Reserved field, default set to 05
reserve_L	Reserved field, default set to A0

(3) Use the FPort = 2

CRC Tool: https://crccalc.com/, select Hex input and the algorithm of CRC-16/KERMIT.

Example: Set the Node's data interval is 10 minutes.

Send the downlink command (HEX) via FPort=2:

00 90 00 0A 00 01 A0 05 5F 32

0x00	0x90	0x00	collect_ duty_L	collect_ duty_H	0x01	Reserve_L	Reserve_H	crc- L	crc- H
00	90	00	OA	00	01	AO	05	5F	32

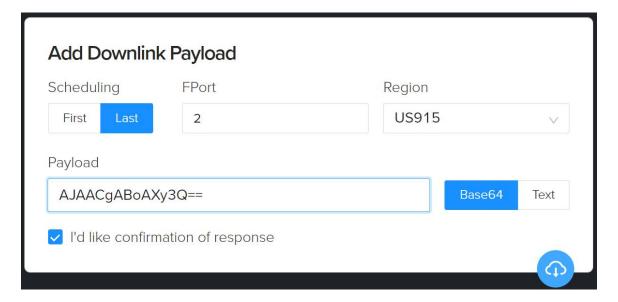
ACK Response via FPort=3:

05 00 0A 05 A0

0x05	collect_duty_H	collect_duty_L	reserve_H	reserve_L
05	00	OA	05	AO

Command List:

Description	Command (HEX)	Command (Base64)
Set Uplink interval =1 minute	009000010001A0051E9A	AJAAAQABoAUemg==
Set Uplink interval = 5 minutes	009000050001A0050EB7	AJAABQABoAUOtw==
Set Uplink interval = 10 minutes	0090000A0001A005F2DD	AJAACgABoAXy3Q==
Set Uplink interval = 15 minutes	0090000F0001A005A6FB	AJAADwABoAWm+w==
Set Uplink interval = 20 minutes	009000140001A0050A08	AJAAFAABoAUKCA==
Set Uplink interval = 30 minutes	0090001E0001A005A244	AJAAHgABoAWiRA==
Set Uplink interval = 60 minutes	0090003C0001A005BB32	AJAAPAABoAW7Mg==


11.2 Reboot the device

FPort = 2

Command: 00C800000000002B26

11.3 How to send downlink

Example: use the Helium Console to send

12. Device Installation

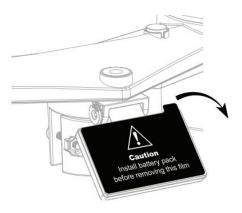
12.1 Select an Appropriate Installation Location

Before installing the weather station, please consider the followings:

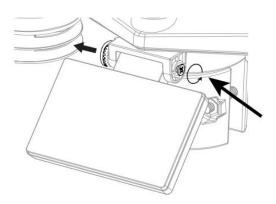
- 1) Rain gauge must be clean every few months.
- 2) Avoid radiant heat reflected from any adjacent buildings and structures. Ideally, the weather station should be installed at 1.5m (5') from any building, structure, ground or roof top.
- 3) Choose an area of open space in direct sunlight without any obstruction of rain, wind, and sunlight.
- 4) Transmission range between weather station and gateway could reach a distance of 2~10 km at line of sight, providing there are no interfering obstacles in between or nearby such as trees, towers, or high voltage line. Check the reception signal quality to ensure good reception.
- 5) Household appliance such as fridge, lighting, dimmers may pose Electromagnetic interference (EMI), while Radio Frequency Interference (RFI) from devices operating in the same frequency range may cause signal intermittent. Choose a location at least 1-2 meter (3-5 feet) away from these interference sources to ensure best reception.

12.2 Installing the Weather Station

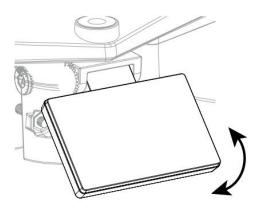
12.2.1 Adjust the solar panel


The tilting angle of solar panel can be adjusted vertically from 0° into 15°, 30°, 45° and 60° positions depending on the area you are living in. For optimal power output year-round, please set the tilt angle that is closest to your latitude.

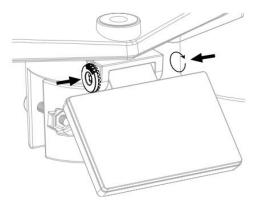
Location (latitude, longitude)	Solar panel tilt angle	
Hamburg (53.558, 9.7874)	60°	0
Chicago (42.1146, -88.0464)	45°	
Houston (29.7711, -95.3552)	30°	
Bangkok (14.2752, 100.5684)	15°	30
Sydney (-33.5738, 151.3053) *	30°	60° 45°


^{*}Sensors installed in Southern Hemisphere must have their solar panels facing North.

Step 1: Remove the solar panel protection film.

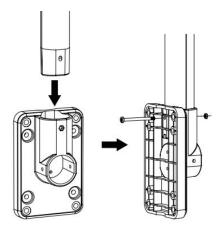


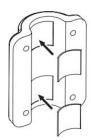
Step 2: Loosen the screw lightly until the gears on the opposite side separated from lock position.



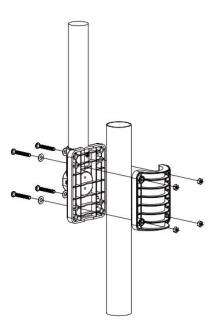
Step 3: Adjust the vertical angle of the solar panel (0°, 15°, 30°, 45°, 60°) according to the latitude of your location.

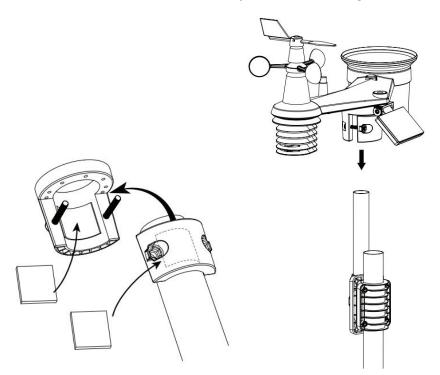
Step 4: Push the gear and tighten the screw until the gears are securely locked.




12.2.2 Install the Mounting Pole

Step 1: Fasten the plastic pole onto your fix pole with mounting base, clamp, washers, screws and nuts. Following below sequences:


1) Insert the plastic pole into the hole of the mounting stand, and then secure it with the screw and nut.


2) Apply 2 rubber pads on the mounting clamp.

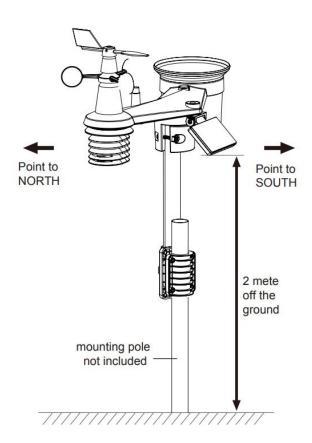
3) Fasten the mounting stand and clamp together onto a fix pole with 4 long screws and nuts.

Step 2: Apply 2 rubber pads on the inner sides of the mounting base and clamp of the weather station, and loosely fasten them together.

Step 3: Place the weather station over the mounting pole and align it to North direction before fastening the screws.

1. Any metal object can attract lightning strikes, including the mounting

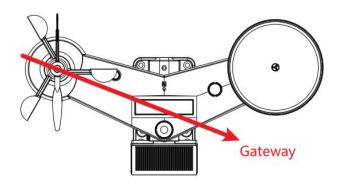
pole. Never install weather station in stormy days.


- 2. If you want to install a weather station on a house or building, consult a licensed electrical engineer to ensure proper grounding. Direct lightning impact on a metal pole can damage or destroy your home.
- 3. Installing the sensor at high location may result in personal injury or death. Perform as many initial inspections and operations as possible on the ground and in buildings or houses. Only install the weather station on clear, dry days.

12.2.3 Direction Alignment

Install the weather station in an open location with no obstructions above and around the sensor for accurate rain and wind measurement.

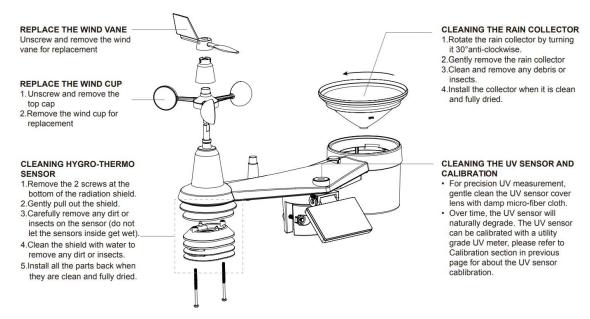
Locate the North (N) marker on top of the weather station and align the marker to point North upon final installation with a compass or GPS. Tighten the mounting bracket around a 30 to 40 mm diameter pole (not included) using two screw and nuts provided.


Use the bubble level on the weather station to make sure the sensor is completely level for proper measurement of rainfall intensity, UV and light intensity.

12.2.4 Recommendation for best wireless communication

Effective wireless communication is susceptible to noise interference in the environment, and distance and barriers between the sensor transmitter and the gateway.

1) Installation direction. When installing equipment, in addition to the direction of wind direction, also need to consider the direction of wireless transmission. In the direction shown, pointing to the gateway will get a better signal.


- 2) Distance. Path loss occurs naturally with distance. This device is rated to 10km by line of sight (in interference free environment and without barriers). However, typically you will get 1~3km maximum in real life installation, which includes passing through barriers.
- 3) Barriers. Radio signal are blocked by metal barriers such as aluminum cladding. Please align the weather station and gateway to get them in clear line of sight through window if you have metal cladding.

The table below show a typical level of reduction in signal strength each time the signal passed through these building materials (RF signal reduction for reference):

Materials	Signal strength reduction
Glass (untreated)	10 ~ 20%
Wood	10 ~ 30%
Plasterboard / drywall	20 ~ 40%
Brick	30 ~ 50%
Foil insulation	60 ~ 70%
Concrete wall	80 ~ 90%
Aluminum siding	100%
Metal wall	100%

13. Trouble Shooting

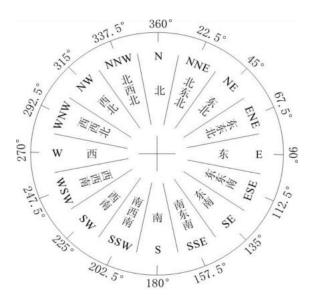
13.1 Maintenance of Weather Station

13.2 Sensors can't join LoRa network, how to do?

- 1) Check the gateway frequency configuration. Make sure the gateway and sensor have the same uplink and downlink frequency.
- Check the real-time log and click config button of the sensor to see if there are any sensor data packets. If there are packets, check whether the gateway is sending downlink packets.
- 3) If the channels and other configurations are correct and the gateway logs do not have packets, please contact technical support.

13.3 S2120 Rainfall Intensity Measurement Principle?

The device collects rainfall values at a cycle of 12 seconds, and calculates according to the current rainfall at time t2 and the last rainfall at time t1 according to the formula.


Rainfall intensity = Δ rainfall / Δ time (rainfall intensity unit: mm/h, rainfall unit: mm, time: h)

When there is no rainfall event, the rainfall intensity will gradually decrease and clear after 15 minutes. The data reported is the maximum rainfall intensity within this uplink interval.

Alternatively, If you want to get the cumulative rainfal, you can use the <u>\$700+\$2100</u> to check the cumulative rainfall directly.

13.4 The wind direction degrees and corresponding direction diagram

13.5 Battery Life Prediction

The power consumption table is for reference only. The battery life depends on various factors, such as frequency band, distance from the gateway, and ambient temperature.

https://files.seeedstudio.com/products/SenseCAP/S210X/SenseCAP_S21XX_Sensor_Battery_Life_Prediction.xlsx

13.6 Support

Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.

Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc.) and send a mail to: support@sensecapmx.com

13.7 Document Version

Version	Date	Description	Editor
V1.0.0	5/01/2022	First edition	Jenkin Lu
V1.0.1	10/25/2022	Modify the description of the downlink command	Jenkin Lu
V1.0.2	6/5/2022	Add more Q&A in trouble shooting	Andrea Ouyang
V1.0.3	8/12/2024	Update the rainfall intensity instruction.	Lee

-56